答疑·限时优惠

如果,你想让我看见你的疑问并且百分之百的回答。可以加入我的知识星球。
AI悦创·进化岛
AI悦创·进化岛

你好,我是悦创。

好久不见,最近在啃数学、Java、英语没有来更新公众号,那么今天就来更新一下啦!

又到了每日一啃,啃代码的小悦。今天我遇到了 Python 原类,然而我啥也不懂。只能靠百度和谷歌了,主要还是用谷歌来查啦,百度前几条永远是广告准确度也不行(个人观点),也顺便参考了几个博客:廖雪峰网站,添加了一点自己的观点和理解。

1. type()

动态语言和静态语言最大的不同,就是函数和类的定义,不是编译时定义的,而是运行时动态创建的。

比方说我们要定义一个 Hello 的 class,就写一个 hello.py 模块(这里我实际创建的是:the_test_code_project.py 模块):

class Hello(object):
    def hello(self, name='world'):
        print('Hello, %s.' % name)

当 Python 解释器载入 hello 模块时,就会依次执行该模块的所有语句,执行结果就是动态创建出一个 Hello 的 class 对象,测试如下:

if __name__ == '__main__':
    h = Hello()
    h.hello()
    print(type(Hello))
    print(type(h))

运行结果如下:

Hello, world.
<class 'type'>
<class '__main__.Hello'>

其中,上面的输出结果:__main__.Hello 等价于 <class 'the_test_code_project.Hello'> 运行的方式不同显示的方式也不同,但含义是一样的。

type() 函数可以查看一个类型或变量的类型,为了让小白更轻松,我也写了个例子:

number = 12
string = 'Hello AIYC!'
float_number = 12.1
list_data = [1, '2', 3.5, 'AIYC'] # 可变
tuples = (1, '2', 3.5, 'AIYC') # 不可变

if __name__ == '__main__':
    print(type(number))
    print(type(string))
    print(type(float_number))
    print(type(list_data))
    print(type(tuples))

运行结果:

<class 'int'>
<class 'str'>
<class 'float'>
<class 'list'>
<class 'tuple'>

Hello 是一个 class,它的类型就是 type ,而 h 是一个实例,它的类型就是class Hello

我们说 class 的定义是运行时动态创建的,而创建 class 的方法就是使用 type() 函数。

type() 函数既可以返回一个对象的类型,又可以创建出新的类型,比如,我们可以通过 type() 函数创建出Hello 类,而无需通过 class Hello(object)... 的定义:

def fn(self, name='world'): # 先定义函数
    print('Hello, %s.' % name)

Hello = type('Hello', (object,), dict(hello=fn)) # 创建 Hello class
# Hello = type('Class_Name', (object,), dict(hello=fn)) # 创建 Hello class
# type(类名, 父类的元组(针对继承的情况,可以为空),包含属性的字典(名称和值))

我们接下来来调用一下代码,看输出的结果如何:

if __name__ == '__main__':
    h = Hello()
    h.hello()
    print(type(Hello))
    print(type(h))

这里推荐写成:if __name__ == '__main__': 使代码更加的规范。

运行结果:

Hello, world.
<class 'type'>
<class '__main__.Hello'>

要创建一个 class 对象,type() 函数依次传入 3 个参数:

  1. class 的名称;
  2. 继承的父类集合,注意 Python 支持多重继承,如果只有一个父类,别忘了 tuple 的单元素写法;(这个个 tuple 单元素写法起初本人不太理解,然后一查并认真观察了一下上面的代码就想起来 tuple 单元素写法需要加逗号(,),就是你必须这么写:tuple_1 = (1,) 而不能这么写:tuple_2 = (1)tuple_2 = (1) 的写法,Python 会自动认为是一个整数而不是一个元组)
  3. class 的方法名称与函数绑定,这里我们把函数 fn 绑定到方法名 hello 上。

通过 type() 函数创建的类和直接写 class 是完全一样的,因为 Python 解释器遇到 class 定义时,仅仅是扫描一下 class 定义的语法,然后调用 type() 函数创建出 class。(直接 Class 创建也是)

正常情况下,我们都用 class Xxx... 来定义类,但是,type() 函数也允许我们动态创建出类来,也就是说,动态语言本身支持运行期动态创建类,这和静态语言有非常大的不同,要在静态语言运行期创建类,必须构造源代码字符串再调用编译器,或者借助一些工具生成字节码实现,本质上都是动态编译,会非常复杂。

2. metaclass

除了使用 type() 动态创建类以外,要控制类的 创建行为 ,还可以使用 metaclass。

metaclass,直译为元类,简单的解释就是:

  • 当我们定义了类以后,就可以根据这个类创建出实例,所以:先定义类,然后创建实例。

    image-20200602213149088

  • 但是如果我们想创建出类呢?

    那就必须根据 metaclass 创建出类,所以:先定义 metaclass ,然后创建类。连接起来就是:先定义 metaclass ,就可以创建类,最后创建实例。

所以,metaclass 允许你创建类或者修改类 。换句话说,你可以把类看成是 metaclass 创建出来的“实例”。

metaclass 是 Python 面向对象里最难理解,也是最难使用的魔术代码。正常情况下,你不会碰到需要使用metaclass的情况,所以,以下内容看不懂也没关系,因为基本上你不会用到。(然而还是被我遇见了,而且还是看不懂,但经过大佬的指点就只是知道如何使用,但并不了解其中的原理,所以才有了此篇。)

我们先看一个简单的例子,这个 metaclass 可以给我们自定义的 MyList 增加一个 add 方法:

class ListMetaclass(type):
    def __new__(cls, name, bases, attrs):
        attrs['add'] = lambda self, value: self.append(value) # 加上新的方法
        return type.__new__(cls, name, bases, attrs) # 返回修改后的定义

定义 ListMetaclass ,按照默认习惯,metaclass 的类名总是以 Metaclass 结尾,以便清楚地表示这是一个metaclass 。

有了 ListMetaclass ,我们在定义类的时候还要指示使用 ListMetaclass 来定制类,传入关键字参数 metaclass

class MyList(list, metaclass=ListMetaclass):
    pass

当我们传入关键字参数 metaclass 时,魔术就生效了,它指示 Python 解释器在创建 MyList 时,要通过ListMetaclass.__new__() 来创建,在此,我们可以修改类的定义,比如,加上新的方法,然后,返回修改后的定义。

__new__() 方法接收到的参数依次是:

  1. 当前准备创建的类的对象;
  2. 类的名字;
  3. 类继承的父类集合;
  4. 类的方法集合。

测试一下 MyList 是否可以调用 add() 方法:

L = MyList()
L.add(1)
print(L)

# 输出
[1]

而普通的 list 没有 add() 方法:

>>> L2 = list()
>>> L2.add(1)
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'list' object has no attribute 'add'

这时候,我想你应该和我会有同样的问题,动态修改有什么意义?

直接在 MyList 定义中写上 add() 方法不是更简单吗?

正常情况下,确实应该直接写,我觉得通过 metaclass 修改纯属变态。


以下内容,小白选择观看!

但是,总会遇到需要通过 metaclass 修改类定义的。ORM 就是一个典型的例子。

ORM 全称“Object Relational Mapping”,即对象-关系映射 ,就是把关系数据库的一行映射为一个对象,也就是一个类对应一个表,这样,写代码更简单,不用直接操作 SQL 语句。

要编写一个 ORM 框架,所有的类都只能动态定义, 因为只有使用者才能根据表的结构定义出对应的类来。

让我们来尝试编写一个 ORM 框架。

编写底层模块的第一步,就是先把调用接口写出来。

比如 ,使用者如果使用这个 ORM 框架,想定义一个 User 类来操作对应的数据库表 User ,我们期待他写出这样的代码:

class User(Model):
    # 定义类的属性到列的映射:
    id = IntegerField('id')
    name = StringField('username')
    email = StringField('email')
    password = StringField('password')

# 创建一个实例:
u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
# 保存到数据库:
u.save()

其中,父类 Model 和属性类型 StringFieldIntegerField 是由 ORM 框架提供的,剩下的魔术方法比如save() 全部由 metaclass 自动完成。虽然 metaclass 的编写会比较复杂,但 ORM 的使用者用起来却异常简单。

现在,我们就按上面的接口来实现该 ORM。

首先来定义 Field 类,它负责保存数据库表的字段名和字段类型:

class Field(object):

    def __init__(self, name, column_type):
        self.name = name
        self.column_type = column_type

    def __str__(self):
        return '<%s:%s>' % (self.__class__.__name__, self.name)

Field 的基础上,进一步定义各种类型的 Field ,比如 StringFieldIntegerField 等等:

class StringField(Field):

    def __init__(self, name):
        super(StringField, self).__init__(name, 'varchar(100)')

class IntegerField(Field):

    def __init__(self, name):
        super(IntegerField, self).__init__(name, 'bigint')

下一步,就是编写最复杂的ModelMetaclass了:

class ModelMetaclass(type):

    def __new__(cls, name, bases, attrs):
        if name=='Model':
            return type.__new__(cls, name, bases, attrs)
        print('Found model: %s' % name)
        mappings = dict()
        for k, v in attrs.items():
            if isinstance(v, Field):
                print('Found mapping: %s ==> %s' % (k, v))
                mappings[k] = v
        for k in mappings.keys():
            attrs.pop(k)
        attrs['__mappings__'] = mappings # 保存属性和列的映射关系
        attrs['__table__'] = name # 假设表名和类名一致
        return type.__new__(cls, name, bases, attrs)

以及基类Model

class Model(dict, metaclass=ModelMetaclass):

    def __init__(self, **kw):
        super(Model, self).__init__(**kw)

    def __getattr__(self, key):
        try:
            return self[key]
        except KeyError:
            raise AttributeError(r"'Model' object has no attribute '%s'" % key)

    def __setattr__(self, key, value):
        self[key] = value

    def save(self):
        fields = []
        params = []
        args = []
        for k, v in self.__mappings__.items():
            fields.append(v.name)
            params.append('?')
            args.append(getattr(self, k, None))
        sql = 'insert into %s (%s) values (%s)' % (self.__table__, ','.join(fields), ','.join(params))
        print('SQL: %s' % sql)
        print('ARGS: %s' % str(args))

当用户定义一个class User(Model)时,Python解释器首先在当前类User的定义中查找metaclass,如果没有找到,就继续在父类Model中查找metaclass,找到了,就使用Model中定义的metaclassModelMetaclass来创建User类,也就是说,metaclass 可以隐式地继承到子类,但子类自己却感觉不到。

ModelMetaclass中,一共做了几件事情:

  1. 排除掉对Model类的修改;
  2. 在当前类(比如User)中查找定义的类的所有属性,如果找到一个Field属性,就把它保存到一个__mappings__的dict中,同时从类属性中删除该Field属性,否则,容易造成运行时错误(实例的属性会遮盖类的同名属性);
  3. 把表名保存到__table__中,这里简化为表名默认为类名。

Model类中,就可以定义各种操作数据库的方法,比如save()delete()find()update等等。

我们实现了save()方法,把一个实例保存到数据库中。因为有表名,属性到字段的映射和属性值的集合,就可以构造出INSERT语句。

编写代码试试:

u = User(id=12345, name='Michael', email='test@orm.org', password='my-pwd')
u.save()

输出如下:

Found model: User
Found mapping: email ==> <StringField:email>
Found mapping: password ==> <StringField:password>
Found mapping: id ==> <IntegerField:uid>
Found mapping: name ==> <StringField:username>
SQL: insert into User (password,email,username,id) values (?,?,?,?)
ARGS: ['my-pwd', 'test@orm.org', 'Michael', 12345]

可以看到,save()方法已经打印出了可执行的SQL语句,以及参数列表,只需要真正连接到数据库,执行该SQL语句,就可以完成真正的功能。

不到100行代码,我们就通过 metaclass 实现了一个精简的ORM框架,是不是非常简单?

真叫人头大

补充:

    # __new__ 是在__init__之前被调用的特殊方法
    # __new__是用来创建对象并返回之的方法
    # 而__init__只是用来将传入的参数初始化给对象
    # 你很少用到__new__,除非你希望能够控制对象的创建
    # 这里,创建的对象是类,我们希望能够自定义它,所以我们这里改写__new__
    # 如果你希望的话,你也可以在__init__中做些事情
    # 还有一些高级的用法会涉及到改写__call__特殊方法,但是我们这里不用

小结

metaclass是Python中非常具有魔术性的对象,它可以改变类创建时的行为。这种强大的功能使用起来务必小心。

参考源码

create_class_on_the_fly.py

use_metaclass.py

orm.py

读后有收获可以支付宝请作者喝咖啡,读后有疑问可以下方留言。

AI悦创·创造不同!
AI悦创 » Python 使用元类

Leave a Reply